

Use of Alternative Methods to Animal Testing in Chemical Assessment under CSCL

March 7, 2019

Chemical Management Center National Institute of Technology and Evaluation Japan

2019 3rd NITE-SAHTECH Periodical Meeting based on MOU, March 7, 2019

1) Introduction of HESS Database

2019 3rd NITE-SAHTECH Periodical Meeting based on MOU, March 7, 2019

HESS Project (Aug. 2007- Feb. 2011)

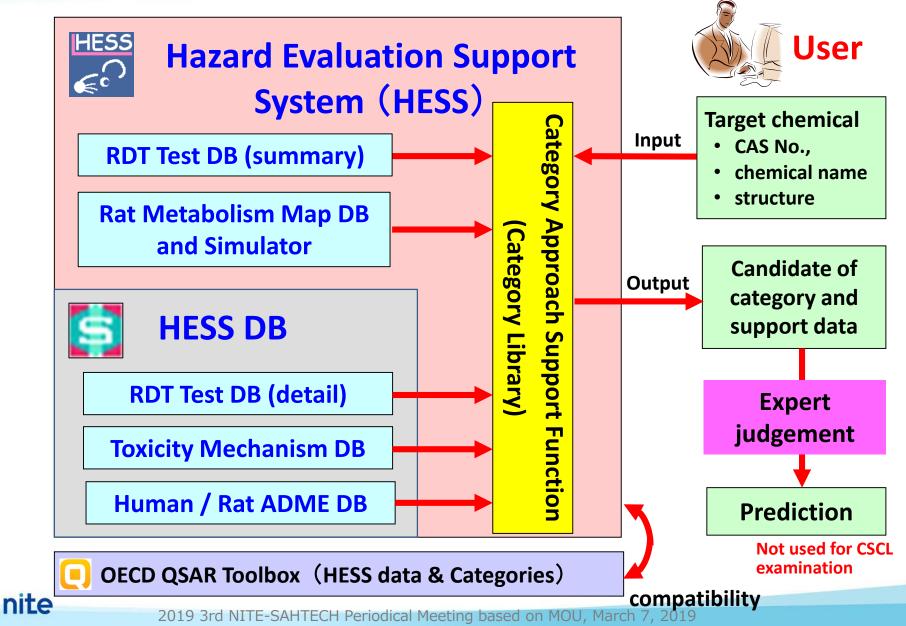
Sponsors:

New Energy and Industrial Technology Development Organization (NEDO) Ministry of Economy, Trade and Industry (METI)

Aim:

Development of Hazard Evaluation Support System Integrated Platform (HESS) for predicting repeated dose toxicity of chemicals based on category approach

Project Leader:


Dr. Makoto Hayashi, Biosafety Research Center (BSRC)

Contractors:

National Institute of Health Sciences (NIHS) National Institute of Technology and Evaluation (NITE) Fujitsu Limited Bourges" Prof. Assen Zlatarov " University Tohoku University Kwansei Gakuin University

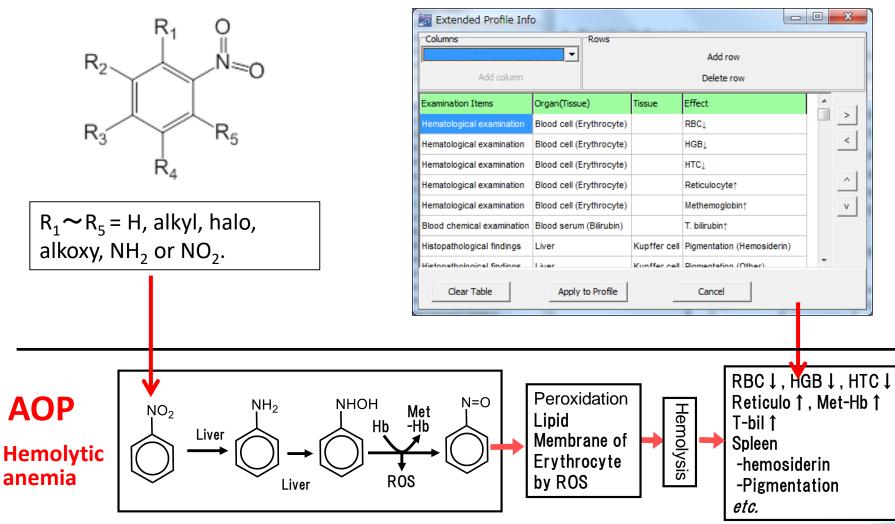
te Hayashi, M. and Sakuratani, Y. 2011. Development of an Evaluation Support System for Estimating Repeated Dose Toxicity of Chemicals Based on Chemical Structure. In: New Horizons in toxicity Prediction. Wilson, A. G. E. ed., Royal Society of Chemistry: Chap. 3.

Overview of HESS and HESS DB

Category Library

Category (effect)	Number of category members	LOEL for target effect (mg/kg/day)	Reliability ranking
Azobenzenes (Hemolytic anemia)	2	0.6±5.7	В
Imidazole-2-thione derivatives (Thyrotoxicity)	2	5.5±5.8	В
Diphenyl disulfides (<mark>Hemolytic anemia</mark>)	1	30	В
Hydrazines (Hemolytic anemia)	2	20±127	В
Acrylamides (Neurotoxicity)	2	21±111	В
Oximes (Hemolytic anemia)	3	23±7	В
Aliphatic nitriles (Hepato toxicity)	4	33±46	В
Nitrobenzenes (Hemolytic anemia)	12	54±82	Α
Hydroquinones (Hepatotoxicity)	2	55±64	В
p-Aminophenols (Renal toxicity)	2	63±476	В
Phenyl Phosphates (Lipidosis of adrenocortical cells)	4	70±34	С
Anilines (Hemolytic anemia)	18	72±40	Α
4,4'-Methylenedianilines/Benzidines (Hepatobiliary toxicity)	5	75±156	В

nite


Sakuratani, Y. Zhang, H. Q. Nishikawa, S. Yamazaki, K. Yamada, T. Yamada, J. Gerova, K. Chankov, G, Mekenyan, O. and Hayashi, M. 2013. Hazard Evaluation Support System (HESS) for Predicting Repeated Dose Toxicity Using Toxicological Categories. SAR OSAR Environ. Res. 24: 617-629. 2019 3rd NITE-SAHTECH Periodical Meeting based on MOU, March 7, 2019

Example of a Category Based on AOP

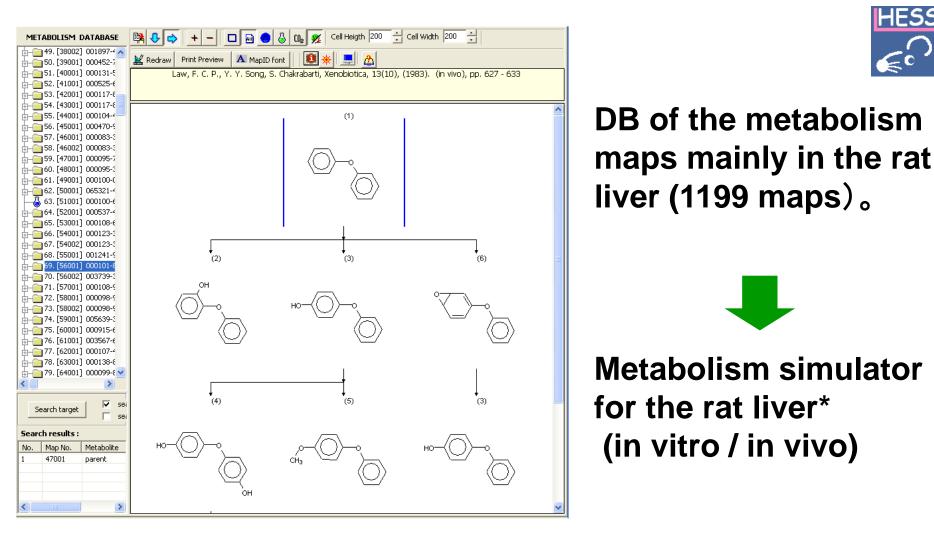
RDT findings related to anemia

HESS

Structural Boundary

Sakuratani, Y. Zhang, H. Q. Nishikawa, S. Yamazaki, K. Yamada, T. Yamada, J. and Hayashi, M. 2013. Categorization of nitrobenzenes for repeated dose toxicity based on adverse butcome pathways. SAR @SAR Environinges 24:35-46. MOU, March 7, 2019

Category Approach Support Function


lter endpoint tree	1 (Target)	2	3	4	5	
Structure		o.v.			ON ON	
⊞Substance Identity						
☐Repeated Dose Toxicity	Target		Analo	bgues		<u>,</u>
-qloel						
Blood Chemical Examin (4/6)		M: 2E3 mg/L, 2E3	M: 200 mg/kg/day			
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □						
Undefined Tissue						
			M: 8 mg/kg/day, 3		M: 154 mg/kg/day,	RDT
HGB↓ (7/13)		M: 63 mg/L, 250 mg/L	.M: 40 mg/kg/day, 1	M: 100 mg/kg/day	M: 154 mg/kg/day,	
Reticulocyte↑ (6/11)		M: 1E3 mg/L, 1E3	M: 40 mg/kg/day, 2	M: 100 mg/kg/day	M: 15.4 mg/kg/day,	Summary 🖵
HCT↓ (7/13)		M: 1E3 mg/L, 1E3	M: 40 mg/kg/day, 2	M: 100 mg/kg/day	M: 154 mg/kg/day,	data
- Histopathological Findings						
− □ Liver						
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓						
Pigmentation (He (3/5)		M: 1E3 mg/L, 1E3			M: 1.38E3 mg/kg/d	
U Spleen (7/23)		M: 250 mg/L, 250	M: 8 mg/kg/day, 2	M: 25 mg/kg/day, 1	M: 462 mg/kg/day,	
Ugan Weights (5/16)		M: 1E3 mg/L, 1E3	M: 2E3 mg/L, 2E3		M: 462 mg/kg/day,	
L _{■NOEL} (7/190)		M: 63 mg/L, 63 mg/	M: 8 mg/kg/day, 8	M: 25 mg/kg/day, 2	M: 46.2 mg/kg/day,	
₽Profile						
Study No. (Link to SSRDT)		894	228	250	427	Link to
		729	892 222	244	845	
Chemical No. (Link to HESS DB)						
	Nitrobenzenes (He	Nitrobenzenes (He Nitrobenzenes (Hep	Nitrobenzenes (He Nitrobenzenes (Hep	Nitrobenzenes (He Nitrobenzenes (Hep	Nitrobenzenes (He Nitrobenzenes (Hep	1000
L⊟Metabolism						
U Observed Rat Liver metabolism		3 metabolites	1 metabolites		9 metabolites	
1	nk to Catego	rv	Š. 🔪 🔒	ink to Rat Me	tabalian	
		-				
2019	STO NITE-SAHTE	CH Periodical Me	eeting based of	APD, Barch 7,	2019	

RDT Test Data in HESS and HESSDB

			HESS	S
DB Name	# of chemicals	Data Source	HESS	HESS- DB
HESS Repeated Dose Toxicity	700	 MHLW/NIHS safety examination of existing chemicals under CSCL in Japan: 362 studies MITE toxicity test (OECD TG407): 27 studies MITI toxicity test (OECD TG422): 104 studies MTP short term studies: 59 studies MTP long term studies (dose selection studies): 141 studies etc. 	0	Ο
HESS Repeated Dose Toxicity (CSCL New Chemicals)	49	RDT test data used for the examination of new chemical substances under CSCL in Japan.	0	
HESS RDT DB (HPV Chemicals)	130	OECD SIDS	0	
HESS RDT DB (Inhalation)	29	OECD SIDS	0	
Drug Repeated Dose Toxicity	50	Papers published for drug registration in Japan		0
TGP Repeated Dose Toxicity	124	TGP (Toxicogenomics Project by NIBIOHN, Japan)	0	
COSMOS DB	852	COSMOS DB	0	
ToxRefDB	493	ToxRef DB	0	
Tox-Omics RDT DB	31	Tox-Omics project (CERI, Japan)	0	0

Rat Metabolism Map DB and Simulator

*Mekenyan, O.G. Dimitrov, S. Dimitrova, N. Dimitrova, G. Pavlov, T. Chankov, G, Kotov, S. Vasilev, K. and Vasilev, R. 2006. Metabolic activation of chemicals: in-silico simulation, SAR QSAR Environ. Res. 17:107-120.

2019 3rd NITE-SAHTECH Periodical Meeting based on MOU, March 7, 2019

nite

RDT Test DB (detailed)

Study [HessDB_S	Gearch]			Cha	m_No. 1		_	Chemi	ical D	ata <mark>ICa</mark>	s No l	95-6	4-71	[Name] 3,	4-xidic	line						
udy Link	Test Result Flag	g Summan	y Test M			Data		Chemic			2140.1	95-64	1-7 0	vanej 5,	4-Xynui	me						
28>	Te st Item	Hematolo	ogy_Male			•	/.ctua	al	•		Comr	ment		ignificant).01	: differe	nce fro	om control	l group ;	* : P≦0 . 0	(5 *** :	: P≦	•
		<u>.</u>		Admi																		_
	DOSE		mg/kg	0				10	J			Do	1C					250				
	No. of animals			5				5				20	J	5				5				
				mean	SD	s	. F1 F	F3 m	nean	SD	s	. F1	F3	mean	SD	s	. F1 F3	mean	SD	s	. F1	F3
	RBC		x10º/	6.91	0.32			7.	.13	0.34				6.89	0.18			6.20	0.32	# #	V	
	HCT(PCV)		%	41.8	0.7			47	2.6	1.3				41.8	0.3			37.4	1.2	# #	V	
	HGB		g/dL	14.1	0.3 N			17	4.4	0.4			,	14.2	0.1			12.7	0.5	ŵ	V	
	MCV		µm³	60.6	2.1			55	9.9	2.0				60.8	1.7			60.4	1.9			
	MCH		pg	20.5	0.7			20	0.3	0.8				20.6	0.5			20.6	0.5			
	МСНС	/	%	33.8	0.2			37	3.9	0.3			1	33.9	0.2			34.0	0.4			
	Met-Hgb																					
	Heinz	,																				
	WBC	1	x10ª/	11.2	2.2			8.4	.4	3.5				11.9	3.7			16.8	1.1	ŵŵ	Δ	
Þ	LEUCO%	NEUT	%	11	2			17		5	**			18	2	WW		12	2			
	LEUCO%	STAB																1				
	LEUCO%	SEG																1				
	LEUCO%		%	88	2			81	1	4	w											
	LEUCO%		%	1	1			1		0	-7				11	-						
	LEUCO%		%	1	0			1		1	-7				Tt	2117	nato	JO	2V			
	LEUCO%		%	0	0			0		0	-7											
	LEUCO%		%	0	0			ō		0	_			DI			abo		-			
	LEUCO%	OTHERS		Ē							_			DI	00		che		SU	V		
	E-Blast	<u> </u>		 							-7											
	RET	;	‰	26	12			30	0	10	_											
	Plt	,	x10³/		88				093	46					JN	2 a	n w	/eis	2nu			
	СТ		A12 1						/20		_					2						
	PT		sec.	14.6	0.4			1	4.4	0.5												
	APTT		sec.	27.8	1.7				6.4	1.8					ASV		oatł		021			

Toxicity Mechanism DB

Mechanism information for the critical toxicity such as necrosis of hepatocytes observed in RDT was built in.

<Mechanism Information>

• Toxicity

nite

- Possible Chemistry Reaction
 /Metabolism
- Possible Toxicant
- Possible Interaction with Target Molecule
- Possible Effects
- Target Organ/Tissue/Cell etc.

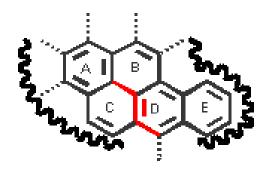
<Mechanism Summary>

Possible Mechanism Summary

<Experimental Information>

- Species
- Experimental Design
- in vitro / in vivo / ex vivo
- Dose / Concentration Employed
- Effective Dose / Concentration

<Other information>

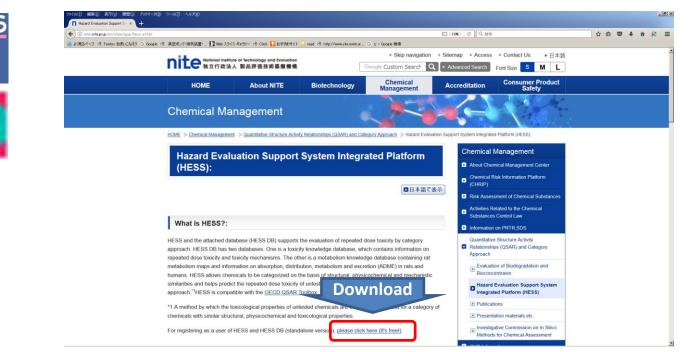

- Other Compounds studied
- Additional Information
- Authors' Suggestion

Human / Rat ADME DB

Information for chemical substances related to human/rat metabolism that are useful for comparing species differences in toxicity between human and rat.

Absorption rate, Cmax, Tmax					
Imvolvement of transporter					
Apparent volume of distribution					
Time-dependent changes by repeated doses					
Brain \rightarrow Blood-brain barrier, Adipocyte \rightarrow strage					
Liver \rightarrow Metabolism, Kidney \rightarrow Urinary excretion					
Kidney \rightarrow Binding to protein					
Organs with higher concentration					
of chemicals than blood					
Imvolvement of transporter					
Related enzyme and molecular information					
Contribution ratio, Cellular fraction, Metabolite					
Spaces differences, Strain differences					
Excretion rate, Imvolvement of transporter					
Spaces differences, Strain differences					
Result of interaction, inhibition of enzyme					
of enzyme test					
of toxicity					

P450 Metabolism Prediction Model based on Ligand Structure*


Human CYP2E1 model

*Yamazoe, Y. Ito, K. Yoshinari. K. 2011. Construction of a CYP2E1template system for prediction of the metabolism on both site and preference order. Drug Metabol. Rev. <u>43</u>: 409-439.

Download Site

http://www.nite.go.jp/en/chem/qsar/hess-e.html

If you have any questions on HESS, please don't hesitate to contact us (<u>hess@nite.go.jp</u>).

OECD QSAR Toolbox (containing HESS data and categories)
 http://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
 2019 3rd NITE-SAHTECH Periodical Meeting based on MOU, March 7, 2019

2) Read-across Rules for Bioaccumulation under CSCL

Alternative Testing Methods Allowed

Biodegradation Test (OECD301C; BOD≥60%) →

Read-across

Bioconcentration Test (OECD305; BCF<5,000) →

- Log P < 3.5
- Log D < 2.5 (for ionic substances)
- MW ≥ 800 (MW ≥ 1,000, for substances with two or more halogens)
- Read-across (based on specific rules)

Read-across Rules for Bioaccumulation

- The evaluation of read-across results under CSCL had previously been conducted case-by-case.
- Read-across rules for bioaccumulation were defined in 2013 to clarify the criteria for the acceptable readacross results

Rule 1: Based on structural similarity including QSAR predictions

Rule 2: Based on hydrophilicity data by HPLC

http://www.meti.go.jp/policy/chemical_management/english/files/laws/bioaccumulat ion_analog_approach.pdf

nite

Rule 1: Description

If Chemical A meets the following criteria, Chemical A may be judged to be <u>"not highly bioaccumulative"</u>:

- Chemical A and B are similar in structure to each other:
 - Chemical A has the same basic skeleton as Chemical B, or
 - Chemical A is an isomer of Chemical B.
- ➢ Measured BCF of Chemical B is less than 500.
- The bioaccumulation of Chemical A is estimated to be almost equal to or lower than Chemical B based on their chemical structure.
 - i. The estimated BCF by QSAR* for Chemical A is almost equal to or lower than both the measured and estimated BCF for Chemical B.
 - ii. There exist two or more structurally similar substances whose measured BCF are less than 100.

* BCFBAF (EPI SUITE) or BCF base-line model (OASIS CATALOGIC).

nite

Rule 1: Summary

Case i)

	New Chemical A (Target)	Chemical B (Source)
Structure	Similar (Same basic skeleto)	n or isomer)
Measured BCF	?	<500
Estimated BCF (QSAR)	BCF _A < BC	CF _B

Case ii)New Chemical A
(Target)Chemical B1
(Source)Chemical B2
(Source)StructureSimilar
(Same basic skeleton or isomer)Similar
(Same basic skeleton or isomer)Measured BCF?<100</td><100</td>

Rule 1: Example

Case i)		New Chemical A (Target)	Chemical B ₁ (Source)	Chemical B ₂ (Source)
	Structure			
	Measured BCF	?	481	485
	Predicted BCF (BCFBAF)	196	481	433

Rule 2: Background

-Evaluation of Biodegradation Products Under CSCL-

The chemical structure of stable biodegradation products (≥ 1 w%) in biodegradation tests need to be identified as possible.

Following tests such as a bioconcentration test need to be conducted for all the stable biodegradation products.

Extra Costs for Industry

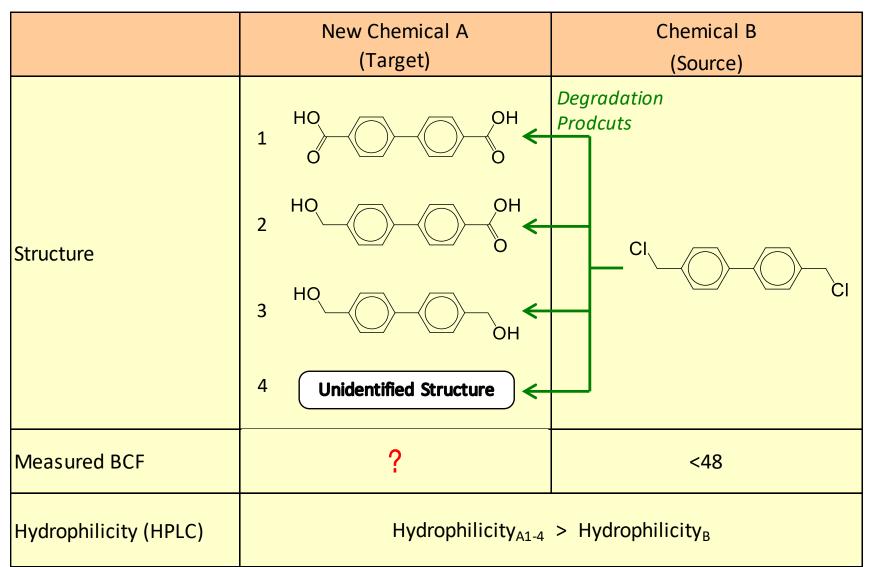
Rule 2: Description

If the substance of concern (Chemical A) has a similar structure to Chemical B* whose bioaccumulation is known and further, if it is observed that Chemical A is more hydrophilic (polar) than Chemical B by reverse-phase HPLC, only when Chemical B is not highly bioaccumulative**and has a certain level (or higher level) of hydrophilicity, Chemical A may be assessed to be <u>"not highly bioaccumulative"</u>.

- * Chemical A and B are similar in structure to each other:
 - Chemical A has the same basic skeleton as Chemical B, or
 - Chemical A is an isomer of Chemical B.

**Measured BCF of Chemical B is less than 500.

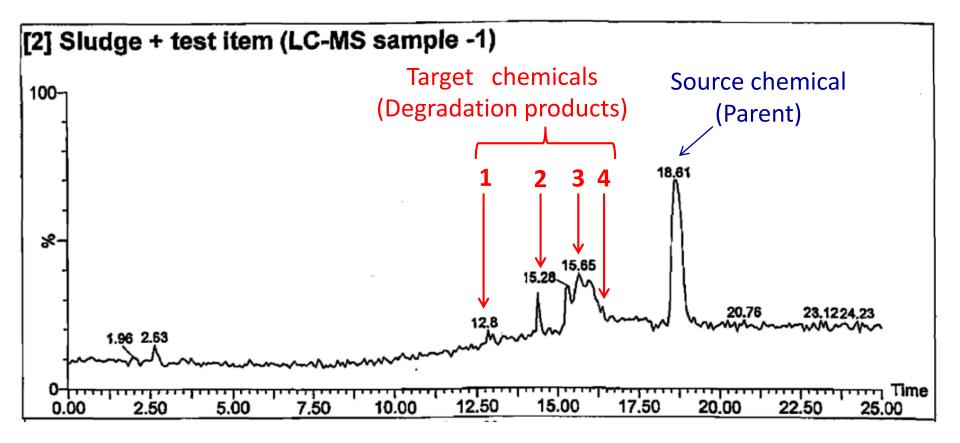
nite


This analogous method does not apply to surfactants, organic metallic compounds, low purity compound and inorganic compound.

Rule 2: Summary

	New Chemical A (Target)	Chemical B (Source)
Structure	Similar (Same basic skeletor	n or isomer)
Measured BCF	?	<500
Hydrophilicity (HPLC)	Hydrophilicity _A > Hy	vdrophilicity _B
Comparison of Hydrophilicity by reversed-phase HPLC	Chemical A	more hydrophili
	Chemical B	less hydrophilic

nite


Rule 2: Example

nite

* OECD Series on Testing and Assessment No.254: Case Study on the Use of an Integrated Approach for Testing and Assessment of the Bioaccumulation Protectial of Degradation Products of 4,4+Bis (Chloromethyl) 1,1-Biphenyl ENV/JM/MONO(2016)52.

Comparison of Hydrophilicity by HPLC

Considerations from our Review Experience of the Read-across Results of New Chemicals Submitted to CSCL

- Read-across rules for the evaluation of bioconcentration facilitate the use of read-across in the notification of new chemicals.
- Reduction of uncertainties by additional support evidence can extend the applicability of read-across (e.g. using IATA approach).
- Skill levels on read-across (e.g. selection of appropriate source chemicals) vary by companies. (NITE supports industry to master read-across.)