自転車フレームに使用されるアルミニウム合金の X線回折計測による物性評価について

事故通知内容

折りたたみ自転車で走行中、トップチューブ(本体フレーム)が破断し、 転倒、負傷した。

事故品調查


- ○フレーム材質:アルミニウム合金 A6061
- ○熱処理:T4/T6(メーカー情報)
- ○製造年:2012年 ○化学成分(wt%):

	Fe			_	Cr			その他	
0.40	0.7	0.15	0.15	0.8	0.04	0.25	0.15	0.15 以下	残
~0.8	以下	~0.40	以下	~1.2	~ 0.35	以下	以下	以下	部

JIS H 4140参照

○破断面観察:

乗車による応力によってパイプ下側にクラックが発生し、 波断に至った可能性が高い。

物性評価

複数台の事故同等品(2012年モデル及び2013年モデル)の振動試験(JIS D 9301) において、2012年モデルのフレームに破損が集中した。

製造年による材料物性 の違いあり?

1. 元素分析の結果

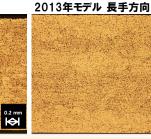
蛍光X線分析装置を使って各モデルのフレーム材に含まれる元素を確認

組成	Si	Fe	Cu	Mn	Mg	Cr	Zn	その他	Ti	Al
2012年製	0.65	0.13	0.19	_	1.0	_	0.08	0.02	0.01	97.9
2013年製	0.46	0.18	0.21	_	1.1	_	0.01	0.03	0.02	98.0

-ム材の組成に大きな違いはない。

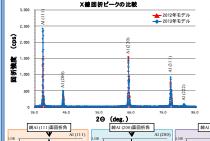
2. ビッカース硬さ試験の結果

試験結果


2012年モデル	2013年モデル	
75~78	101~105	(

(HV0.5/10)

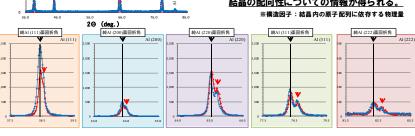
約30%程度の硬度の差が認められ、 2012年モデルの方が硬度が低い。


3. 金属組織観察

2012年モデル 長手方向

金属組織状態に違いはみられない。

4. X線回折による結晶構造観察



X線回折ピークから得られる情報 ○ピーク位置(角度) ⇒格子面間隔や格子定数に依存

⇒結晶構造を同定

○ピーク強度 ⇒<mark>原子座標や構造因子</mark>※に依存 ⇒結晶構造の同定に加え、

結晶の配向性についての情報が得られる。

○ピーク位置について
・全体としては、母相であるAIの結晶構造を
反映したビークが観測された。
・ビーク1つ1つは構造を持っている。
・純AIの回折ビークに加えて高角度側に
シフトしたビークが観測された。(→赤矢印)
・格子面間隔が小さくなっていることから
上輪側に歪んでいる相が存在していることが分かる。

両モデルともに内部にMg2Siの時効析出 によるAIの圧縮歪み相が存在している。

○ビーク強度について ・同等品に比べて、事故品(111)面の回折ビークの強度が低い。

2012年モデルは2013年モデルに 比べて、[111]方向の配向性が弱い。

まとめ

元素分析及び金属組織に差異が見られず、硬度のみが異なるアルミニウム合金を対象にX線回折による結 晶構造観察を行った結果、硬度の低い材料では[111]方向の配向性が弱い傾向があることが判明した。

これまで脚立などアルミニウム合金材料の破断事象で、製品起因が 疑われる場合に、元素分析、金属組織観察、寸法、硬度測定に著し い差が無ければ「事故原因不明」と結論づけざるを得ず、それ以上の 評価手法をNITEは持っていなかった。

0.2 mm

X線回折を用いることにより、材料が影響する事象か否か の判断精度の向上が期待される。