PRTR Estimation Manual

11. Aluminum Alloy Manufacturing Industry

January 2001 Revised: March 2002

Japan Aluminum Alloy Refiners Association

Contents

1.	Criteria for Estimating Releases and Transfers of Chemical Substances			
1.1	Class I Designated Chemical Substances			
1.2	The judgment criteria of the facility required to report			
2.	Aluminum alloy manufacturing process			
2.1	Example 1 (Mn) 4			
2.1.1	Estimation techniques of releases and transfers of the Designated Chemical			
	Substance,			
	Mn, in the aluminum alloy ingot			
	manufacturing4			
2.2	Example 2 (Be)			
2.2.1	Estimation techniques of releases and transfers of the Designated Chemical			
	Substance,			
	Be, in the aluminum alloy ingot			
	manufacturing7			
2.3	Example 3 (Dioxins) 10			
2.3.1	Estimation techniques of Dioxins released to air10			
3.	Separate table11			

1. Criteria for Estimating Releases and Transfers of Chemical Substances

1.1 Class I Designated Chemical Substances

The Class I Designated Chemical Substances specified by the Cabinet Order are as follows.

Classification	Number of Substances
Pesticides/Pharmaceuticals	123
Ozone-depleting substances	21
Inorganic substances, metal and its compounds	24
Others	186
Total	354

NOTE: Cabinet Order No. 138: Cabinet Order for the Law Concerning Reporting, etc. of Releases to the Environment of Specific Chemical Substances and Promoting Improvements in Their Management

The substances related to the industry are as follows:

Cabinet Order No.	Name of substance
68	Chromium and trivalent chromium compounds (Cr, Cr ₂ O ₃ , etc.)
179	Dioxin (Specific Class I Designated Chemical Substances)
231	Nickel
294	Beryllium and its compounds (Specific Class I Designated Chemical Substances: Be, BeO, etc.)
311	Manganese and its compounds (Mn, MnO2, etc.)

*Each firm should confirm any other substances in addition to the above (Sb, B, etc) if necessary.

1.2 The judgment criteria of the facility required to report

- [1] The number of employees Full-time employees shall be 21 or more.
- [2] The annual amount handled of Designated Chemical Substances

 T/year or more (5 T/year or more in 2001FY, 2002FY)
 Note however, the annual amount of Specific Class I Designated Chemical Substances shall be
 0.5 T/ year or more.
- [3] Specific requirements facilities The facility shall be equipped with specific requirements
- [4] Form of products, etc.

The product shall contain 1% or more of Class I Designated Chemical Substances (0.1% or more of Specified Class I Designated Chemical Substances) and be applicable to none of the following.

- Products which are always solid and are not powder or granulate in the handling process by the facility.
- Products handled in the enclosed state.
- Products used mainly for general consumers.
- Recycled resources

2. Aluminum alloy manufacturing process

NOTES: Recycling

- Valuable shipped-out materials (recycled) are not required to report.
- •Transfers of non-valuable shipped-out materials should be added up and reported as waste transfers.

2.1 Example 1 (Mn)

NOTES: Amount recycled (C)

- Valuable shipped-out materials (recycled) are not required to report.
- Transfers of non-valuable taking-out materials should be added up and reported as "waste transfers."
- 2.1.1 Estimation techniques of releases and transfers of the Designated Chemical Substance, Mn, in the aluminum alloy ingot manufacturing

Name of raw material (Content of the substance)		Annual amount used	Amount of the substance used
Al-10% Mn Metallic Mn	(Mn 10%) (Mn 100%)	65.0 T/year 0.50 T/year	Mn 6,500kg/year Mn 500kg/year *1
3000S BM Scrap	(Mn 0.8%) (Mn less than 1.0%) (Mn ?)	(Calculation not required)	(*1.T/year or more (5 T/year or more in 2001FY, 2002FY)
Amou	nt handled A		7,000 kg/year

(i) Amount handled A (the annual amount used)

(Plus the amount from any other than the raw materials)

(ii) Releases, etc. (B, C and D)

	Raw	(a) Emission Factors*2	(b) Amount of the	axb
Туре	materials	(g/Mn1kg)	substance used	Releases/Transfers
	used		(kg/year)	(kg/year) (Total)
Release to air	Al-Mn	0.00	Mn 6,500	$0.00 \downarrow (0.00 \text{ kg/seer} - \mathbf{P})$
	Metallic Mn	0.00	Mn 500	$0.00 \int (0.00 \text{ kg/year} = B)$
Dust transferred	Al-Mn	0.03	Mn 6,500	$0.20 \int (0.22 \text{ kg/year} - D)$
	Metallic Mn	0.03	Mn 500	$0.02 \int (0.22 \text{ kg/ycar} = D)$
Recycled dross	Al-Mn	15	Mn 6,500	97.5 $\int (105 kg/y_{20} r - C)$
	Metallic Mn	15	Mn 500	7.5 $\int (105 \text{ kg/year} = \text{C})$
Total (B+C+D)	-	-	-	105.22 = 105 kg/year

Estimate using	Emission Factors	(*2: See the separate	table).
1	1		

(iii) Product g (the annual amount of the substance contained in the products manufactured)

The target shall be only the products containing the target raw materials, Al-10% Mn and metallic Mn.

Droduct code	(Content of the substance)	Annual amount of Content of the substar		
Product code		Production	(total content)	
AC4A.1 *3	(Mn 0.50%)	600 T/year	Mn 3,000 kg/year	
AC4B.1	(Mn 0.40%)	1,000 T/year	Mn 4,000 kg/year	
AD3.1	(Mn 0.45%)	400 T/year	Mn 1,800 kg/year	
3004	(Mn 1.1%)	100 T/year	Mn 1,100 kg/year	
	Total			
(including Mn i	n any other raw materials	2,100 T/ year	9,900 kg/year (= g	g)
used)				

(*3: Indicated by the JIS code, not by the customer's code)

The result, A < g, is not available as it is. (g includes Mn in any other raw materials)

(iv) Consumption E and the amount of product stock F

(1) The amount of products G = E + F

Mass balance limited to the amount of target raw materials handled is

$$A = B + C + D + G.$$

 $G = A - (B + C + D)$
 $= 7,000 - 105 = 6,895 \text{ kg/year} = E + F$

(2) Estimation of E and F

[1] The contents of the substance contained in the stock of products (f)*4 is the below.

Product code		Product stock (shows decreased s	tock) Con	tent of the bstance
AC4A.1	(Mn0.50%)	10T	Mn	50kg
AC4B.1	(Mn0.40%)	20T	Mn	80
AD3.1	(Mn0.45%)	30T	Mn	135
3004	(Mn1.1%)	5T	Mn	55
Total		15T	Mn	50kg(=f)

(*4 Increase and decrease in the amount at the beginning and end of the fiscal year)

[2] With the results up to here, estimate E and F proportionally

Total content of Mn				Amount of Mn in the target raw		
					materials handled	
	e	9,900 - 50 = 9,850 kg/ye	ar		Е	
_	f	50 (4 – (2) – item [1])			F	
	g	9,900 kg/year (by item i	i)	G	6,895 kg/year (4 – item (1))	
E	= 9,850/	'9,900 x 6,895 = 6,860.2	6,860 kg	g/yea	r	
F	= 50/9,9	$000 \ge 6,895 = 34.8$ 35	kg/year			

(v) Summary

A: Amount handled	7,000 kg/year	E: Consumption	6,860 kg/year
B: Amount released to the air	0.0 kg/year	F: Amount of product stock	35 kg/year
C: Amount of recycled dross	105 kg/year	G: Amount of Products	6,895 kg/year
D: Amount of dust transferred	0.2 kg/year		

Note 1: B and D shall be reported.

Note 2: B and D are in kg/year, and in significant figure of two digits. (Figures less than 1kg/year are rounded off to first decimal place)

2.2 Example 2 (Be)

NOTES: Amount recycled (C)

- Valuable shipped-out materials (recycled) are not required to report.
- Transfers of non-valuable shipped-out materials should be added up and reported as "waste transfers."
- 2.2.1 Estimation techniques of releases and transfers of the Designated Chemical Substance, Be, in the aluminum alloy ingot manufacturing

Nat (Conter	me of material at of the substance)	Annual amount used	Amount of the substance used
Al-2.5% Be	(Be 2.5%)	24.0 T/year	Be 600 kg/year
5000S	(Be 0.004%)	(Calculation not	
Scrap	(Be less than 0.10%)	frequired)	
Amou	nt handled A		600 kg/year

(i) Amount handled A (the amount used this year)

(ii) Releases, etc. (B, C, and D)

	Raw	Emission Factors*2	Amount of the	Releases/Transfers (kg/year)	
Туре	materials	(g/Be1kg)	substance used		
	used		(kg/year)		
Release to air	Al-Be	0.00	Be 600	0 (= B)	
Dust transferred	Al-Be	0.00	Be 600	0 (= D)	
Recycled dross	Al-Be	0.00	Be 600	0 (= C)	
Total (B+C+D)	-	-	-	0	

Estimate using	Emission	Factors	(*2: See	the	separate	table).
1	1				1	

(iii) Product g (the amount of the substance contained in the products manufactured this year)

The target shall be only the products containing the target raw materials, Al-2.5 % Be.

		Annual amount of	Content of the substance (total		
Product code	(Content of the substance)	production	content in	cluding Be from other	
			tha	an Al-2.5 % Be)	
AC7A.2	(Be 0.004%)	14,000 T/year	Be	560 kg/year	
AD6.1	(Be 0.003%)	3,500 T/year	Be	105 kg/year	
	Total	17,500 T/ year	Be	665 kg/year (= g)	

(iv) Consumption E and the amount of product stock F

(1) Product amount G = E + F

Mass balance limited to the amount of target raw material handled*2 is :

(*2 Al-2.5 % Be)

$$\mathbf{A} = \mathbf{B} + \mathbf{C} + \mathbf{D} + \mathbf{G}.$$

$$\mathbf{G} = \mathbf{A} - (\mathbf{B} + \mathbf{C} + \mathbf{D})$$

$$= 600 - 0 = 600 \text{ kg/year} = \text{E} + \text{F}$$

[NOTES] The difference between g = 665 kg/year (item iii) and G = 600 kg/year shows

Be in any other raw materials except Al-2.5 % Be.

(2) Estimation of E and F

[1] The contents of the substance in the stock (f^*3) of the products is shown below.

Product code		Product stock		Content of the substance	
AC7A.2	(Be0.004%)	20T	Be	0.80 kg	
AC6.1 (Be0.003%)		30T	"	0.90	
Total		10T	Be	0.10kg(=f)	
	(shows do magaad starts)				

(shows decreased stock)

(*3 Increase and decrease in the amount at the beginning and end of the fiscal year)

[2] With the results up to here, estimate E and F proportionally

Total content of Be			le	Amount of Be in the target raw materials			
				handled			
	e	665 - 0.10 = 664.9 l	kg/year		E		
	f $0.10 (4 - (2) - \text{item} [1])$			F			
	g	665 kg/year (item (i	ii))	G	600 kg/year (4 – item (1))		
E	= (664.9	9/665) x 600 = 599.9	600 kg/year				
F	= (0.10/	665) x 600 = 0.090	0.1 kg/year				

(v) Summary

A: Amount handled	600 kg/year	E: Consumption	600 kg/year
B: Amount released to the air	0.0 kg/year	F: Amount of product stock	0.1 kg/year
C: Amount of recycled dross	0.0 kg/year	G: Amount of products	600 kg/year
D: Amount of dust transferred	0.0 kg/year		

Note 1: B and D shall be reported.

Note 2: B and D are in kg/year, and in significant figure of two digits or three digits (up to the first decimal place).

2.3 Example 3 (Dioxins)

2.3.1 Estimation techniques of Dioxins released to air

(Estimation example)

- Premise
- (1) The results of the measurements of dioxins level released to air stipulated by the law

0.50*ng-TEQ/Nm³ = 0.50 x 10⁻⁶ mg-TEQ/Nm³

* The results of released level measured by each facility once a year are used.

- (2) Relevant values during the measurementExhaust gas flow:35,000 Nm³/hSampling time:4 hoursAmount of molten aluminum alloy which
measurement:Recovery yield rate:95 %
- (3) The annual production quantity at designated facilities related to the release level describe above 11,000 T/year
- (4) The annual operation time at designated facilities related to the release level describe above 20 h/day x 125 day/year + 24 h/day x 125 day/year = 5,500 h/year
- Estimation of released Dioxins

Use either of the following methods.

Calculation 1 By exhaust gas flow

Annual released amount = 0.50×10^{-6} mg-TEQ/Nm³ x 35,000 Nm³/h x 5,500 h/year = 96 mg-TEQ/year

Calculation 2By Emission Factors (unit emission)Emission Factors = 0.50×10^{-6} mg-TEQ/Nm³ x 35,000 Nm³/h x 4 h/8 T x 0.95= 9,210 x 10^{-6} mg-TEQ/product TAnnual released amount = 9,210 x 10^{-6} mg-TEQ/product T x 11,000 T/year

= 101 mg-TEQ/year

3. Separate table

	Raw materials used	Product code	I				
Test			Corresponded designated substances	Exhaust gas	Dust	Dross	Notes
А	Metallic Mn pieces	Al-10%Mn	Mn	0	0.03	15	Dross is not
В	Al-2.5%Be	AC7A.1	Be	0	0	0	generated
С	Metallic Ni board	AC8A.2	Ni	0	0	3.5	addition of
D	Metallic Cr	Al-5%Cr	Cr	0	0.0006	15	TH De.
				Not	Appears to	Depend on the	
				detected	depend on the	amount of	
					surface	dross	
Notes					condition of	generated and	
notes					each raw	the content of	
					material used	the aluminum	
					and its addition	alloy in dross.	
					method.		

Emission Factors